首页 大数据 正文

大数据需要用到哪些语言(大数据需要用到哪些语言知识)

大数据 59
本篇文章给大家谈谈大数据需要用到哪些语言,以及大数据需要用到哪些语言知识对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 本文目录一览: 1、大数据专业主要学哪些语言?

本篇文章给大家谈谈大数据需要用到哪些语言,以及大数据需要用到哪些语言知识对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

大数据专业主要学哪些语言?

1、Java

大数据的本质无非就是海量数据的计算、查询与存储,后台开发很容易接触到大数据量存取的应用场景,所以 Java 语言有着天然优势,现在大数据的组件很多都是用 Java 开发的,比如 HDFS、Yarn、HBase、MapReduce、ZooKeeper等等。

2、Python

Python 的优势在于资源丰富,拥有坚实的数值算法、图标和数据处理基础设施,建立了非常良好的生态环境。并不是所有的企业都能自己生产大量数据用于决策辅助,更多的互联网企业都是靠爬虫来抓取互联网数据进行分析,而 Python 在网络爬虫领域有着强势地位。Python 的战略定位就是做一种简单、易用但专业、严谨的通用言语组合。Python 语法简捷而清晰,对底层做了很好的封装,是一种很容易上手的高级语言。更重要的是, Python 的包装能力、可组合性、可嵌入性都很好,可以把各种复杂性包装在 Python 模块里,暴露出漂亮的接口。

3、Scala

Scala 在 JVM 上运行,基本上成功地结合了函数范式和面向对象范式。目前,它在金融界和需要处理海量数据的公司企业中取得了巨大进展。Scala 通常采用一种大规模分布式方式来处理数据,它还驱动着像 Spark 和 Kafka 这样的大数据处理平台,也被 Twitter 和 LinkedIn 这样的大型企业所使用。

大数据用什么语言?

1、Python语言

Python往往在大数据处理框架中得到支持,但与此同时,它往往又不是“一等公民”。比如说,Spark中的新功能几乎总是出现在Scala/Java绑定的首位,可能需要用PySpark编写面向那些更新版的几个次要版本(对Spark Streaming/MLLib方面的开发工具而言尤为如此)。

与R相反,Python是一种传统的面向对象语言,所以大多数开发人员用起来会相当得心应手,而初次接触R或Scala会让人心生畏惧。一个小问题就是你的代码中需要留出正确的空白处。这将人员分成两大阵营,一派觉得“这非常有助于确保可读性”,另一派则认为,我们应该不需要就因为一行代码有个字符不在适当的位置,就要迫使解释器让程序运行起来。

2、R语言

R语言有着简单而明显的吸引力。使用R语言,只需要短短的几行代码,你就可以在复杂的数据集中筛选,通过先进的建模函数处理数据,以及创建平整的图形来代表数字。它被比喻为是Excel的一个极度活跃版本。

R语言最伟大的资本是已围绕它开发的充满活力的生态系统:R语言社区总是在不断地添加新的软件包和功能到它已经相当丰富的功能集中。据估计,超过200万的人使用R语言,并且最近的一次投票表明,R语言是迄今为止在科学数据中最流行的语言,被61%的受访者使用(其次是Python,39%)。

3、JAVA

Java,以及基于Java的框架,被发现俨然成为了硅谷最大的那些高科技公司的骨骼支架。 “如果你去看Twitter,LinkedIn和Facebook,那么你会发现,Java是它们所有数据工程基础设施的基础语言,”Driscoll说。

大数据处理需要用到的编程语言有哪些

R语言:为统计人员开发的一种语言,可以用R语言构建深奥的统计模型、数据探索以及统计分析等

Python语言:Python是数据分析利器,使用Python进行科学计算可以提高效率,Python可以替代Excel进行更高效的数据处理

java语言:Java是一门很适合大数据项目的编程语言,Hadoop、Spark、Storm、Flink、Flume、Kafka、Sqoop等大数据框架和工具都是用Java编写的,因此,大数据会不可避免的使用到Java。

Scala语言:Scala是一门轻松的语言,在JVM上运行,成功地结合了函数范式和面向对象范式

大数据需要用到哪些语言的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于大数据需要用到哪些语言知识、大数据需要用到哪些语言的信息别忘了在本站进行查找喔。

扫码二维码